Preclinical assessment of Self-replicating DNA/RNA vaccine encoding HIV gp140

M.E. Bargalló¹, Alberto C. Guardo¹, Karl Ljungberg², L. Leal¹, Inga Szurgot², L. Miralles¹, M.J. Maleno¹, N. Climent¹, J.M. Gatell¹, F. García¹, P. Lijjeström², Montserrat Plana¹, on behalf of EHVA consortium

¹AIDS Research Unit. Institut d’Investigacions Biomèdiques August Pi i Sunyer-HIVACAT. Hospital Clínic de Barcelona. University of Barcelona, Spain.
²Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
Background and Aim

- Non-amplifying and Self-Amplifying mRNA(replicon) based DC Vaccines

 - **pDNA:** Conventional mRNA

 - **RREP:** *alphavirus RNA* launched replicon

 - **DREP:** *alphavirus DNA* launched replicon

- **Objectives:** RNA-based DC vaccines to be compared (all expressing the ZM96gp140 insert)

 - To study the capture and transmission of different immunogens by DCs.

 - To characterize the phenotypic and morphologic, changes induced by immunogens in DCs.

 - To analyse the antigen processing and presentation by DCs of different immunogens.

Piotr S. Kowalski et al. Molecular Therapy, 2019
Schematic outline of the study

DAY 0
- PBMCs isolation and culture → monocytes adherence

DAY 2
- Collecting PBMCs depleted monocytes (lymphocytes) after 2h incubation
- Cytokine supplement (IL-4, GM-CSF) → obtaining immature MoDCs

DAY 5
- Collecting immature MoDCs
- Transfection iMoDCs with replicons

DAY 6
- Capture efficiency evaluation (24h after the pulsing)

DAY 7
- MoDCs and T cell co-culture to determine the proliferative capacity of T cells (CFSE staining)
- Immunophenotype of DCs:
 - Viability (Cytometry)
 - Maturation (Cytometry)
 - gp140 expression (Cytometry)
- Fluorescence microscopy

DAY 13
- T lymphocytes proliferation measurement (Cytometry)
- Evaluation of cytokine and chemokine secretion (Luminex)
- Evaluation of IFN-γ-producing specific T lymphocytes (Elispot)
Effects of RREP/DREP on cell viability and DC maturation

Viability
- RREP n=4
- DREP n=12

Maturation
- RREP
- DREP

Insert expression in CD83+ / HLADR+

Capture efficiency evaluation (24h after the pulsing)

Immunophenotype of DCs:
- Viability (Cytometry)
- Maturation (Cytometry)
- gp140 expression (Cytometry)
Effects of RREP/DREP on cell viability and DC maturation

Capture efficiency evaluation (24h after the pulsing)

Immunophenotype of DCs:
- Viability (Cytometry)
- Maturation (Cytometry)
- gp140 expression (Cytometry)

Viability

Man RREP n=4
Man DREP n=12

Maturation

Insert expression in CD83+ / HLADR+
Effects of RREP/DREP on T cell proliferation, cytokine production and HIV-specific T cell responses.

- **Elispot Day 1**
- **Elispot Day 6**
- **DREP gp140**

RREP n=3 DREP n=11

- IL-1β
- TNF-α
- IFN-α
- IL-6

Evaluation of IFN-γ-producing specific T lymphocytes (Elispot)
Conclusions

• Our findings suggest that these RREP and DREP replicons were able to activate DC and efficiently deliver HIV gp140.

• Moreover, by inducing env-specific immune responses.

• DREP vector seems to be a more promising candidate to be used in the preventive vaccine approaches against HIV.
Acknowledgments

HIV Immunopathology and Cellular Immunology
L. Miralles
N. Climent
MJ. Maleno
A. Crespo Guardo
M. Plana

AIDS Unit
Infectious Diseases
F. García
Lorna Leal
Carmen Ligero

Sample Processing
Cristina Rovira
Carmen Hurtado

Department of Microbiology,
Tumor and Cell Biology,
Karolinska Institutet
Dr. P. Lijjeström and Cols

Thank all patients and healthy volunteers
Thank all the members of the AIDS reasearch group.

This project has received funding from the European Union’s horizon 2020 research and innovation programme under grant agreement No 681032.

This work was co-funded by ISCIII (PI15/00480 and PI18/00699) and the European Regional Development Fund (FEDER) , HIVACAT and RIS